Climate Change

© 2012 Pearson Education, Inc.

The Climate System

• The climate system includes the:

- Atmosphere
- Hydrosphere
- Geosphere
- Biosphere
- Cryosphere (Ice & Snow)

How Is Climate Change Detected?

- Techniques for analyzing Earth's climate history
 - Seafloor sediments—Numbers and types of organic remains are indicative of past seasurface temperatures.
 - Oxygen isotope analysis—The ratio of ¹⁸O/ ¹⁶O in shells of microorganisms reflect past temperatures.

How Is Climate Change Detected?

- Techniques for analyzing Earth's climate history
 - Other sources of data for studying past climates include:
 - -Growth of tree rings
 - Drill cores in glacial ice
 - Pollen contained in sediment and coral reefs
 - Information found in historical documents

Deep Sediment Drilling & Core Analysis

© 2012 Pearson Education, Inc.

Tree Rings Are Useful Recorders of Past Climates

© 2011 Pearson Education, Inc.

В.

Oxygen ratios ($O^{18} \& O^{16}$) in Foram shells

Warm Water = High O^{18} Cold Water = Low High O^{18}

Same Thing for Ice Cores!

Higher O¹⁸

В.

Abundance of Pollen Spores (Dinosaurs??)

Composition of Earth's Atmosphere

Concentration

CO₂ Concentrations Over the Past 400,000 Years (Famous "Hockey Stick" Graph)

Thermal Structure of the Atmosphere

© 2011 Pearson Education, Inc.

Incoming Solar Radiation

Some Atmospheric Basics

- The greenhouse effect
 - Radiant energy that is absorbed heats Earth and eventually is reradiated skyward.
 - Radiation is in the form of longwave infrared radiation.
 - Atmospheric gases, primarily H₂O and CO₂, are more efficient absorbers of longwave radiation.
 - This selective absorption, called the greenhouse effect, results in warming of the atmosphere.

The Greenhouse Effect

Natural Causes of Climate Change

- Several explanations have been formulated to explain climate change, including:
 - Exposed Land Surface Changes
 - Variations in Earth's orbit—eccentricity, obliquity, and precession
 - Volcanic activity
 - Changes in the Sun's output associated with sunspots

Changing Land Surface Elevation

Orbit & Tilt Changes

Effect of Volcanic Activity on Solar Radiation

В.

© 2012 Pearson Education, Inc.

More Sun Spots = Warmer Climates

Annual CO₂ Contribution of an Average American

Human Influences

Air Pollution Haze from China

Natural Sources More than 50%

Net Effect: Changes in Arctic Sea Ice

© 2011 Pearson Education, Inc.

Warming for 100 years or 10,000 years?

Ice Cores-Temps

CO₂ Studies

Some Possible Consequences of Climate Change

- Although complex to predict, some possible consequences include:
 - Probable rise in sea level
 - Greater intensity of tropical cyclones
 - Changes in the extent of Arctic sea ice and permafrost
 - Sudden unexpected changes in climate are possible.
 - A constant state of change is very likely.